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Abstract. I prove that for minimal constraints the solution to the
normal equations is independent of the weight of the constraints. I also prove
that the solution to the augmented normal equations is orthogonal to the con-
straints. Both of these are true in the exact case. Since the matrix inversion
is done by computer roundo¤ error will spoil these results.

In solve we deal with normal matrices with some degeneracies. We usually remove
these degeneracies by imposing constraints. In this note I show that if the constraints
are minimal, i.e., we have only enough constraints to remove the degeneracies, then
the solution we get is independent of the weight of the constraints.

We start by considering the normal equations:

NA = B (1)

we wish to …nd a solution to these equations. For concreteness, we assume that N is
n £ n matrix. If N were not degenerate, we could invert this equation directly. So,
assume that it is degenerate and has n0 independent vanishing eigenvectors.

NZj = 0 (2)

We want to modify equation 1 by appending to it a matrix of constraints:

(N + C)A = B (3)

If we assume that C spans the null space of N , that is that

C
X
ajZj 6= 0 (4)

for all non-zero aj then equation 3 can be inverted.
Now, any square symmetric matrix can be decomposed in the following fashion:

C =

Ã
E
F

!
W

³
ET F T

´
(5)

where E and W are square non-singular m £ m matrices, and F is a rectangular
m £ (n ¡ m) matrix. The dimension m is the rank of the matrix. If we demand
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that the columns of

Ã
E
F

!
be orthogonal then this decomposition is unique up to

permutations. The matrix W is a weight matrix which determines how tightly the
constraints are applied. If we further assume that

rank(C) = n0 (6)

then the constraint matrix C is said to be minimal. In words we have done is imposed
just enough constraints to invert the normal equation, but no more.

In the remainder of this note we will prove the following two propositions:

1. The solution A to equation 3 above is independent of W:

2. The solution is orthogonal to the constraint equation:

CA = 0 (7)

Proof. We can always apply a similarity transform to get new normal equations
which are equivalent to the old:

h
S (N + C)S¡1

i
SA = SB (8)

or
(N 0 + C 0)A0 = B0 (9)

where

N 0 + C 0 = S (N + C)S¡1 (10)

A0 = SA (11)

B0 = SB (12)

The solution to the transformed normal equations is:

A0 = [(N 0 + C 0)]¡1B0 (13)

It is well known that any symmetric matrix can be diagonalized by a similarity
transform and there well established procedures for doing so. Suppose we multiply
equation 3 by the transform that diagonalizes N : Without loss of generality we
assume that the vanishing eigenvalues are the …rst n0. By assumption

S (N + C)S¡1 =

Ã
0 0
0 D

!
+ SCS¡1 =

Ã
0 0
0 D

!
+ C 0 (14)
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here D is a diagonal matrix, and the second equality implicitly de…nes C 0:

C 0 =

Ã
E0

F 0

!
W

³
E0T F 0T

´
(15)

where Ã
E0

F 0

!
= S

Ã
E
F

!
: (16)

Note also that from equation 1 we …nd

STB = B0 =

Ã
0
b0

!
: (17)

Using the explicit decomposition of C 0 given in equation 15 one can show directly
that

"Ã
0 0
0 D

!
+ C 0

#¡1
=

Ã
E0T¡1

³
W¡1 + F

0TD¡1F 0
´
E0¡1 ¡E 0T¡1F

0TD¡1

¡D¡1F 0E0¡1 D¡1

!
(18)

which implies that

A0 = [N 0 + C 0]¡1B0 (19)

=

"Ã
0 0
0 D

!
+ C 0

#¡1 Ã
0
b0

!
(20)

=

Ã
¡E 0T¡1F 0TD¡1b0

D¡1b0

!
(21)

Note …rst o¤ that A0, and hence A, is independent of W . This proves our …rst
statement.

To prove the second, note that:

C 0A0 = 0

On the other hand,
C 0A0 = SCA (22)

since S is non-singular, the vanishing of C 0A0 implies the vanishing of CA, which
proves our …rst statement.


